• Home
  • Publications
  • Secondary channel estimation in spatial active noise control systems using a single moving higher order microphone

Research Area

Author

  • Huiyuan Sun*, Naoki Murata, Jihui Zhang*, Tetsu Magariyachi, Prasanga N. Samarasinghe*, Shigetoshi Hayashi, Thushara D. Abhayapala*, Tetsunori Itabashi
  • * External authors

Company

  • Sony Group Corporation

Venue

  • JASA

Date

  • 2022

Share

Secondary channel estimation in spatial active noise control systems using a single moving higher order microphone

View Publication

Abstract

Spatial active noise control (ANC) systems focus on minimizing unwanted acoustic noise over continuous spatial regions by generating anti-noise fields with secondary loudspeakers. Conventionally, error microphones are necessary inside the region to measure the channels from the secondary loudspeakers to the error microphones and record the residual sound field during the noise control. These error microphones highly limit the implementation of spatial ANC systems because of their impractical geometry and obstruction to the users from accessing the region. Recent advances, such as virtual sensing, focus on ANC with microphones placed away from the region. While these techniques relax the usage of error microphones during the noise control, an error microphone array remains necessary during the secondary channel estimation. In this paper, we propose a method to estimate secondary channels without using an error microphone array. Instead, a moving higher order microphone is applied to obtain the secondary channels from the secondary loudspeakers to the region of interest, which includes all desired error microphone locations. By simulation, we show that the proposed method is robust against various measuring errors introduced by the movement of the microphone and is suitable for the secondary channel estimation in spatial ANC systems.

Share

この記事をシェアする