• Home
  • Publications
  • The Pipeline System of ASR and NLU with MLM-based Data Augmentation toward STOP Low-resource Challenge

Research Area

Author

  • Hayato Futami, Jessica Huynh*, Siddhant Arora*, Shih-Lun Wu*, Yosuke Kashiwagi, Yifan Peng*, Brian Yan*, Emiru Tsunoo, Shinji Watanabe*
  • * External authors

Company

  • Sony Group Corporation

Venue

  • ICASSP

Date

  • 2023

Share

The Pipeline System of ASR and NLU with MLM-based Data Augmentation toward STOP Low-resource Challenge

View Publication

Abstract

This paper describes our system for the low-resource domain adaptation track (Track 3) in Spoken Language Understanding Grand Challenge, which is a part of ICASSP Signal Processing Grand Challenge 2023. In the track, we adopt a pipeline approach of ASR and NLU. For ASR, we fine-tune Whisper for each domain with upsampling. For NLU, we fine-tune BART on all the Track3 data and then on low-resource domain data. We apply masked LM (MLM) -based data augmentation, where some of input tokens and corresponding target labels are replaced using MLM. We also apply a retrieval-based approach, where model input is augmented with similar training samples. As a result, we achieved exact match (EM) accuracy 63.3/75.0 (average: 69.15) for reminder/weather domain, and won the 1st place at the challenge.

Share